Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.872
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298230

RESUMO

Ovarian cancer (OC) is one of the deadliest gynecological cancers, largely due to the fast development of metastasis and drug resistance. The immune system is a critical component of the OC tumor microenvironment (TME) and immune cells such as T cells, NK cells, and dendritic cells (DC) play a key role in anti-tumor immunity. However, OC tumor cells are well known for evading immune surveillance by modulating the immune response through various mechanisms. Recruiting immune-suppressive cells such as regulatory T cells (Treg cells), macrophages, or myeloid-derived suppressor cells (MDSC) inhibit the anti-tumor immune response and promote the development and progression of OC. Platelets are also involved in immune evasion by interaction with tumor cells or through the secretion of a variety of growth factors and cytokines to promote tumor growth and angiogenesis. In this review, we discuss the role and contribution of immune cells and platelets in TME. Furthermore, we discuss their potential prognostic significance to help in the early detection of OC and to predict disease outcome.


Assuntos
Plaquetas , Neoplasias , Neoplasias Ovarianas , Feminino , Humanos , Plaquetas/imunologia , Plaquetas/patologia , Células Mieloides/metabolismo , Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Prognóstico , Microambiente Tumoral , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Receptor Cross-Talk/imunologia
3.
Cancer Res ; 83(9): 1383-1385, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37128849

RESUMO

High-grade serous ovarian cancer (HGSOC) is the deadliest subtype of ovarian cancer, and most patients do not survive more than 5 years after diagnosis. Yet, for reasons that are often elusive, approximately 15% of women with advanced-stage HGSOC will survive longer than 10 years. An understanding of the biological basis of long-term survival with HGSOC may elucidate novel prognostic factors and targets for treatment. Past analyses of the clinicopathologic features of these women and genetic profiles of their tumors have not revealed a unifying explanation for their increased longevity. In this issue of Cancer Research, Ferri-Borgogno and colleagues investigate the tumor microenvironment (TME) in samples from both long- and short-term survivors using spatial transcriptomics and single-cell RNA sequencing. They found that, in metastatic tumors, various populations of cancer-associated fibroblasts (CAF) in the TME play different roles in supporting the malignant phenotype of ovarian cancer cells. Higher density of CAFs, particularly αSMA+VIM+PDGFRß+ CAFs, was associated with lower tumor immune infiltration and short-term survival. There was also marked expression of periostin and CD36 in spatially resolved CAFs, as well as a prevalence of the APOE-LRP5 ligand-receptor pair at the tumor-stromal interface in tissue from short-term survivors. These findings suggest that, in short-term survivors, CAFs are able to more effectively promote tumorigenicity, stemness, and chemoresistance in the nearby tumor. See related article by Ferri-Borgogno et al., p. 1503.


Assuntos
Sobreviventes de Câncer , Fibroblastos Associados a Câncer , Neoplasias Ovarianas , Humanos , Feminino , Receptor Cross-Talk , Microambiente Tumoral , Ligantes , Transcriptoma , Neoplasias Ovarianas/patologia , Fibroblastos Associados a Câncer/metabolismo
4.
Cancer Res ; 83(9): 1503-1516, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36787106

RESUMO

Advanced high-grade serous ovarian cancer (HGSC) is an aggressive disease that accounts for 70% of all ovarian cancer deaths. Nevertheless, 15% of patients diagnosed with advanced HGSC survive more than 10 years. The elucidation of predictive markers of these long-term survivors (LTS) could help identify therapeutic targets for the disease, and thus improve patient survival rates. To investigate the stromal heterogeneity of the tumor microenvironment (TME) in ovarian cancer, we used spatial transcriptomics to generate spatially resolved transcript profiles in treatment-naïve advanced HGSC from LTS and short-term survivors (STS) and determined the association between cancer-associated fibroblasts (CAF) heterogeneity and survival in patients with advanced HGSC. Spatial transcriptomics and single-cell RNA-sequencing data were integrated to distinguish tumor and stroma regions, and a computational method was developed to investigate spatially resolved ligand-receptor interactions between various tumor and CAF subtypes in the TME. A specific subtype of CAFs and its spatial location relative to a particular ovarian cancer cell subtype in the TME correlated with long-term survival in patients with advanced HGSC. Also, increased APOE-LRP5 cross-talk occurred at the stroma-tumor interface in tumor tissues from STS compared with LTS. These findings were validated using multiplex IHC. Overall, this spatial transcriptomics analysis revealed spatially resolved CAF-tumor cross-talk signaling networks in the ovarian TME that are associated with long-term survival of patients with HGSC. Further studies to confirm whether such cross-talk plays a role in modulating the malignant phenotype of HGSC and could serve as a predictive biomarker of patient survival are warranted. SIGNIFICANCE: Generation of spatially resolved gene expression patterns in tumors from patients with ovarian cancer surviving more than 10 years allows the identification of novel predictive biomarkers and therapeutic targets for better patient management. See related commentary by Kelliher and Lengyel, p. 1383.


Assuntos
Sobreviventes de Câncer , Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Transcriptoma , Receptor Cross-Talk , Ligantes , Neoplasias Ovarianas/patologia , Cistadenocarcinoma Seroso/patologia , Biomarcadores Tumorais/genética , Microambiente Tumoral
5.
Prog Mol Biol Transl Sci ; 195: 101-120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36707150

RESUMO

G protein-coupled receptors (GPCRs) are expressed by most tissues in the body and are exploited pharmacologically in a variety of pathological conditions including diabetes, cardiovascular disease, neurological diseases, and cancers. Numerous cell signaling pathways can be regulated by GPCR activation, depending on the specific GPCR, ligand and cell type. Ion channels are among the many effector proteins downstream of these signaling pathways. Saliently, ion channels are also recognized as druggable targets, and there is evidence that their activity may regulate GPCR function via membrane potential and cytoplasmic ion concentration. Overall, there appears to be a large potential for crosstalk between ion channels and GPCRs. This might have implications not only for targeting GPCRs for drug development, but also opens the possibility of co-targeting them with ion channels to achieve improved therapeutic outcomes. In this review, we highlight the large variety of possible GPCR-ion channel crosstalk modes.


Assuntos
Canais Iônicos , Receptor Cross-Talk , Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Doenças Cardiovasculares/metabolismo , Canais Iônicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptor Cross-Talk/fisiologia
7.
Front Immunol ; 13: 907636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967419

RESUMO

Tumor-associated macrophages (TAMs) are involved in the growth of prostate cancer (PrC), while the molecular mechanisms underlying the interactive crosstalk between TAM and PrC cells remain largely unknown. Platelet-derived growth factor (PDGF) is known to promote mesenchymal stromal cell chemotaxis to the tumor microenvironment. Recently, activation of spindle pole body component 25 (SPC25) has been shown to promote PrC cell proliferation and is associated with PrC stemness. Here, the relationship between SPC25 and PDGF in the crosstalk between TAM and PrC was investigated. Significant increases in both PDGF and SPC25 levels were detected in PrC specimens compared to paired adjacent normal prostate tissues. A significant correlation was detected between PDGF and SPC25 levels in PrC specimens and cell lines. SPC25 increased PDGF production and tumor cell growth in cultured PrC cells and in xenotransplantation. Mechanistically, SPC25 appeared to activate PDGF in PrC likely through Early Growth Response 1 (Egr1), while the secreted PDGF signaled to TAM through PDGFR on macrophages and polarized macrophages, which, in turn, induced the growth of PrC cells likely through their production and secretion of transforming growth factor ß1 (TGFß1). Thus, our data suggest that SPC25 triggers the crosstalk between TAM and PrC cells via SPC25/PDGF/PDGFR/TGFß1 receptor signaling to enhance PrC growth.


Assuntos
Proteínas Associadas aos Microtúbulos , Fator de Crescimento Derivado de Plaquetas , Próstata , Neoplasias da Próstata , Corpos Polares do Fuso , Macrófagos Associados a Tumor , Linhagem Celular Tumoral , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Receptor Cross-Talk/fisiologia , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Corpos Polares do Fuso/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Microambiente Tumoral , Macrófagos Associados a Tumor/metabolismo
8.
Biomed Pharmacother ; 146: 112588, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35062062

RESUMO

Tumor-associated macrophages (TAMs) are among the abundant cell populations of the tumor microenvironment (TME), which have pivotal roles in tumor development, chemoresistance, immune evasion, and metastasis. Growing evidence indicates that TAMs and the cross-talk between TAMs and tumoral endothelial cells can substantially contribute to tumor angiogenesis, which is considered a vital process for cancer development. Besides, tumoral endothelial cells can regulate the leukocyte infiltration to the TME in solid cancers and contribute to immune evasion. Therefore, targeting the immunosuppressive TAMs and the cross-talk between them can be a promising strategy for improving anti-tumoral immune responses. This review aims to summarize the biology of TAMs, their recently identified roles in tumor development/angiogenesis, and recent advances in macrophage-based cancer immunotherapy approaches for treating cancers.


Assuntos
Imunoterapia/métodos , Neoplasias/imunologia , Microambiente Tumoral , Macrófagos Associados a Tumor/metabolismo , Antineoplásicos Imunológicos/uso terapêutico , Células Endoteliais , Humanos , Neoplasias/tratamento farmacológico , Receptor Cross-Talk , Macrófagos Associados a Tumor/patologia
9.
Endocrinology ; 163(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34977930

RESUMO

Luminal breast cancer (BrCa) has a favorable prognosis compared with other tumor subtypes. However, with time, tumors may evolve and lead to disease progression; thus, there is a great interest in unraveling the mechanisms that drive tumor metastasis and endocrine resistance. In this review, we focus on one of the many pathways that have been involved in tumor progression, the fibroblast growth factor/fibroblast growth factor receptor (FGFR) axis. We emphasize in data obtained from in vivo experimental models that we believe that in luminal BrCa, tumor growth relies in a crosstalk with the stromal tissue. We revisited the studies that illustrate the interaction between hormone receptors and FGFR. We also highlight the most frequent alterations found in BrCa cell lines and provide a short review on the trials that use FGFR inhibitors in combination with endocrine therapies. Analysis of these data suggests there are many players involved in this pathway that might be also targeted to decrease FGF signaling, in addition to specific FGFR inhibitors that may be exploited to increase their efficacy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/fisiologia , Receptores de Esteroides/fisiologia , Transdução de Sinais/fisiologia , Animais , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/química , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Receptor alfa de Estrogênio/análise , Feminino , Fatores de Crescimento de Fibroblastos/genética , Amplificação de Genes , Humanos , Camundongos , Mutação , Receptor Cross-Talk/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/genética
10.
Int J Med Sci ; 19(1): 175-185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34975311

RESUMO

Our previous study found that the combination of halofuginone (HF) and artemisinin (ATS) synergistically arrest colorectal cancer (CRC) cells at the G1/G0 phase of the cell cycle; however, it remains unclear whether HF-ATS induces cell death. Here we report that HF-ATS synergistically induced caspase-dependent apoptosis in CRC cells. Specifically, both in vitro and in vivo experiments showed that HF or HF-ATS induces apoptosis via activation of caspase-9 and caspase-8 while only caspase-9 is involved in ATS-induced apoptosis. Furthermore, we found HF or HF-ATS induces autophagy; ATS can't induce autophagy until caspase-9 is blocked. Further analyzing the crosstalk between autophagic and caspase activation in CRC cells, we found autophagy is essential for activation of caspase-8, and ATS switches to activate capase-8 via induction of autophagy when caspase-9 is inhibited. When apoptosis is totally blocked, HF-ATS switches to induce autophagic cell death. This scenario was then confirmed in studies of chemoresistance CRC cells with defective apoptosis. Our results indicate that HF-ATS induces cell death via interaction between apoptosis and autophagy in CRC cells. These results highlight the value of continued investigation into the potential use of this combination in cancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Artemisininas/farmacologia , Neoplasias Colorretais/patologia , Piperidinas/farmacologia , Quinazolinonas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Artemisininas/uso terapêutico , Autofagia/efeitos dos fármacos , Caspase 8/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Sinergismo Farmacológico , Ativação Enzimática , Humanos , Piperidinas/uso terapêutico , Quinazolinonas/uso terapêutico , Receptor Cross-Talk
11.
J Pharmacol Sci ; 148(1): 156-161, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34924121

RESUMO

We examined the role of ATP and high mobility group box 1 (HMGB1) in paclitaxel-induced peripheral neuropathy (PIPN). PIPN in mice was prevented by HMGB1 neutralization, macrophage depletion, and P2X7 or P2X4 blockade. Paclitaxel and ATP synergistically released HMGB1 from macrophage-like RAW264.7 cells, but not neuron-like NG108-15 cells. The paclitaxel-induced HMGB1 release from RAW264.7 cells was accelerated by co-culture with NG108-15 cells in a manner dependent on P2X7 or P2X4. Paclitaxel released ATP from NG108-15 cells, but not RAW264.7 cells. Thus, PIPN is considered to involve acceleration of HMGB1 release from macrophages through P2X7 and P2X4 activation by neuron-derived ATP.


Assuntos
Trifosfato de Adenosina/fisiologia , Proteína HMGB1/metabolismo , Macrófagos/metabolismo , Neurônios/metabolismo , Paclitaxel/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos , Doenças do Sistema Nervoso Periférico/imunologia , Doenças do Sistema Nervoso Periférico/prevenção & controle , Células RAW 264.7 , Receptor Cross-Talk/imunologia , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X7/metabolismo
12.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948279

RESUMO

Tissue-type plasminogen activator (tPA) plays roles in the development and the plasticity of the nervous system. Here, we demonstrate in neurons, that by opposition to the single chain form (sc-tPA), the two-chains form of tPA (tc-tPA) activates the MET receptor, leading to the recruitment of N-Methyl-d-Aspartate receptors (NMDARs) and to the endocytosis and proteasome-dependent degradation of NMDARs containing the GluN2B subunit. Accordingly, tc-tPA down-regulated GluN2B-NMDAR-driven signalling, a process prevented by blockers of HGFR/MET and mimicked by its agonists, leading to a modulation of neuronal death. Thus, our present study unmasks a new mechanism of action of tPA, with its two-chains form mediating a crosstalk between MET and the GluN2B subunit of NMDARs to control neuronal survival.


Assuntos
Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feto , Camundongos , Cultura Primária de Células , Isoformas de Proteínas , Proteínas Proto-Oncogênicas c-met/fisiologia , Receptor Cross-Talk/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Ativador de Plasminogênio Tecidual/fisiologia
13.
Cell Mol Life Sci ; 79(1): 57, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34921637

RESUMO

The tyrosine kinase receptor EGFR and the G-protein-coupled receptor AT1R induce essential cellular responses, in part via receptor crosstalk with an unknown role in nuclear information transfer and transcription regulation. We investigated whether this crosstalk results in linear, EGFR-mediated nuclear signalling or in parallel, synergistic information transfer leading to qualitative and temporal variations, relevant for gene expression and environment interaction. AT1R and EGFR synergistically activate SRF via the ERK1/2-TCF and actin-MRTF pathways. Synergism, comprised of switch-like and graded single cell response, converges on the transcription factors AP1 and EGR, resulting in synergistic transcriptome alterations, in qualitative (over-additive number of genes), quantitative (over-additive expression changes of individual genes) and temporal (more late onset and prolonged expressed genes) terms. Gene ontology and IPA® pathway analysis indicate prolonged cell stress (e.g. hypoxia-like) and dysregulated vascular biology. Synergism occurs during separate but simultaneous activation of both receptors and during AT1R-induced EGFR transactivation. EGFR and AT1R synergistically regulate gene expression in qualitative, quantitative and temporal terms with (patho)physiological relevance, extending the importance of EGFR-AT1R crosstalk beyond cytoplasmic signalling.


Assuntos
Regulação da Expressão Gênica , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Receptor Cross-Talk , Transdução de Sinais , Transcriptoma
14.
J Reprod Immunol ; 148: 103435, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34741834

RESUMO

Cervical carcinoma is significantly associated with the human papillomavirus (HPV). Persistent infection with high risk-HPV is necessary but not sufficient for the development of cervical cancer. It is not fully understood which immunological mechanisms lead to persistence in some patients. During the life cycle, HPV uses excellent immune evasion mechanisms. Keratinocytes, Langerhans cells (LC), dendritic cells (DC), tissue-resident macrophages, and intraepithelial gamma-delta T cells (γδ T cells) are cellular components of the mucosal immune defense of the female genital tract against HPV. γδ T cells, the prototype of unconventional T cells, play a major role in the first line defense of epithelial barrier protection. γδ T cells connect the innate and adaptive immunity and behave like a guardian of the epithelium against any form of damage such as trauma and infection. Any changes in γδ T cell distribution and functional capability may have a role in persistent HPV infection and cervical carcinogenesis in the early phase. Poor stimulation and maturation of APCs (LC/DC) might lead to persistent HPV infection which all point out pivotal role of γδ T cells in HPV persistence. If such an intriguing link is proven, γδ T cells can be used in potential therapeutics against HPV in infected patients.


Assuntos
Alphapapillomavirus/fisiologia , Células Apresentadoras de Antígenos/imunologia , Colo do Útero/imunologia , Infecções por Papillomavirus/imunologia , Linfócitos T/imunologia , Animais , Diferenciação Celular , Colo do Útero/virologia , Feminino , Humanos , Imunidade Inata , Receptor Cross-Talk , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo
15.
Nat Rev Rheumatol ; 17(10): 608-620, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34480164

RESUMO

Blood vessels form a versatile transport network that is best known for its critical roles in processes such as tissue oxygenation, metabolism and immune surveillance. The vasculature also provides local, often organ-specific, molecular signals that control the behaviour of other cell types in their vicinity during development, homeostasis and regeneration, and also in disease processes. In the skeletal system, the local vasculature is actively involved in both bone formation and resorption. In addition, blood vessels participate in inflammatory processes and contribute to the pathogenesis of diseases that affect the joints, such as rheumatoid arthritis and osteoarthritis. This Review summarizes the current understanding of the architecture, angiogenic growth and functional properties of the bone vasculature. The effects of ageing and pathological conditions, including arthritis and osteoporosis, are also discussed.


Assuntos
Desenvolvimento Ósseo , Doenças Ósseas/fisiopatologia , Osso e Ossos , Endotélio Vascular , Homeostase , Artropatias/fisiopatologia , Envelhecimento/fisiologia , Animais , Artrite/fisiopatologia , Desenvolvimento Ósseo/fisiologia , Doenças Ósseas/tratamento farmacológico , Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/fisiologia , Osso e Ossos/irrigação sanguínea , Osso e Ossos/fisiologia , Osso e Ossos/fisiopatologia , Condrócitos/fisiologia , Endotélio Vascular/fisiologia , Endotélio Vascular/fisiopatologia , Fraturas Ósseas/fisiopatologia , Homeostase/fisiologia , Humanos , Artropatias/tratamento farmacológico , Macrófagos/fisiologia , Camundongos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/fisiopatologia , Neovascularização Fisiológica/fisiologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Osteoporose/tratamento farmacológico , Osteoporose/fisiopatologia , Receptor Cross-Talk/fisiologia , Sinoviócitos/fisiologia
16.
Neoplasia ; 23(9): 979-992, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34352404

RESUMO

Genomic analysis of Pancreatic Neuroendocrine Tumors (PanNETs) has revealed that these tumors often lack mutations in typical cancer-related genes such as the tumor suppressor gene p53. Instead, PanNET tumorigenesis usually involves mutations in specific PanNET-related genes, such as tumor suppressor gene MEN1. Using a PanNET mouse model, human tissues and human cell lines, we studied the cross-talk among MEN1, p53 and Notch signaling pathways and their role in PanNETs. Here, we show that reactivation of the early developmental program of islet cells underlies PanNET tumorigenesis by restoring the proliferative capacity of PanNET cells. We investigated the role of INSM1, a transcriptional regulator of islet cells' development, and revealed that its expression and subcellular localization is regulated by MEN1 and p53. Both human and mouse data show that loss of MEN1 in a p53 wild-type genetic background results in increased nuclear INSM1 expression and cell proliferation. Additionally, inhibition of Notch signaling in a p53 wild-type background reduces the proliferation of PanNET cells, due to repression of INSM1 transcription and nuclear localization. Our study elucidates the molecular mechanisms governing the interactions of INSM1 with MEN1, p53 and Notch and their roles in PanNET tumorigenesis, suggesting INSM1 as a key transcriptional regulator of PanNET cell proliferation.


Assuntos
Tumores Neuroendócrinos/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Tumores Neuroendócrinos/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas/genética , Receptor Cross-Talk/fisiologia , Receptores Notch/genética , Proteínas Repressoras/genética , Frações Subcelulares/metabolismo , Proteína Supressora de Tumor p53/genética
17.
Int Immunopharmacol ; 99: 107963, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34273638

RESUMO

Excessive consumption of alcohol may induce severe liver damage, in part via oxidative stress and inflammatory responses, which implicates these processes as potential therapeutic approaches. Prior literature has shown that Telmisartan (TEL) may provide protective effects, presumably mediated by its anti-oxidant and anti-inflammatory activities. The purpose of this study was to determine TEL's hepatoprotective effects and to identify its possible curative mechanisms in alcoholic liver disease. A mouse chronic alcohol plus binge feedings model was used in the current study for induction of alcoholic liver disease (ALD). Our results showed that TEL (10 mg/kg/day) has the ability to reduce serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP). TEL also increased the activity of superoxide dismutase (SOD) and glutathione (GSH) with concomitant reduction of nitric oxide (NO) malonaldehyde (MDA) in the liver homogenate. Moreover, TEL downregulated nuclear factor kappa B (NF-κB) expression and decreased liver content of interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α). These anti-inflammatory and anti-oxidant activities were associated with a significant increase in the expression of nuclear factor erythroid 2-related factor 2 (Nrf-2), peroxisome proliferator-activated receptors -γ (PPAR-γ), and heme oxygenase-1 (Hmox-1). In conclusion, TEL's hepatoprotective effects against ALD may be attributable to its anti-inflammatory and anti-oxidant activities which may be in part via the modulation of PPAR-γ/ Nrf-2/ NF-κB crosstalk.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Hepatite Alcoólica/tratamento farmacológico , Fator 2 Relacionado a NF-E2/agonistas , PPAR gama/agonistas , Telmisartan/uso terapêutico , Alanina Transaminase/sangue , Alcoolismo/complicações , Fosfatase Alcalina/sangue , Animais , Antioxidantes/farmacologia , Aspartato Aminotransferases/sangue , Consumo Excessivo de Bebidas Alcoólicas/complicações , Citocinas/metabolismo , Heme Oxigenase-1/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Substâncias Protetoras/uso terapêutico , Receptor Cross-Talk/efeitos dos fármacos
18.
Int J Biol Sci ; 17(9): 2348-2355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239361

RESUMO

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has led to more than 150 million infections and about 3.1 million deaths up to date. Currently, drugs screened are urgently aiming to block the infection of SARS-CoV-2. Here, we explored the interaction networks of kinase and COVID-19 crosstalk, and identified phosphoinositide 3-kinase (PI3K)/AKT pathway as the most important kinase signal pathway involving COVID-19. Further, we found a PI3K/AKT signal pathway inhibitor capivasertib restricted the entry of SARS-CoV-2 into cells under non-cytotoxic concentrations. Lastly, the signal axis PI3K/AKT/FYVE finger-containing phosphoinositide kinase (PIKfyve)/PtdIns(3,5)P2 was revealed to play a key role during the cellular entry of viruses including SARS-CoV-2, possibly providing potential antiviral targets. Altogether, our study suggests that the PI3K/AKT kinase inhibitor drugs may be a promising anti-SARS-CoV-2 strategy for clinical application, especially for managing cancer patients with COVID-19 in the pandemic era.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Animais , COVID-19/enzimologia , Chlorocebus aethiops , Simulação por Computador , Humanos , Neoplasias/enzimologia , Neoplasias/mortalidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Pirróis/farmacologia , Receptor Cross-Talk , Células Vero
19.
Toxicology ; 459: 152855, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34252479

RESUMO

Cadmium (Cd) is a toxic heavy metal that accumulates in the brain and causes a series of histopathological changes. Selenium (Se) exerts a crucial function in protecting damage caused by toxic heavy metals, but its potential mechanism is rarely studied. The main purpose of this study is to explore the protective effects of Se on Cd-induced oxidative stress and autophagy in rabbit cerebrum. Forty rabbits were randomly divided into four groups and treated as follows: Control group, Cd (1 mg/kg⋅BW) group, Se (0.5 mg/kg⋅BW) group and Cd (1 mg/kg⋅BW)+Se (0.5 mg/kg⋅BW) group, with 30 days feeding management. Our results suggested that Se treatment significantly suppressed the Cd-induced degenerative changes including cell necrosis, vacuolization, and atrophic neurons. In addition, Se decreased the contents of MDA and H2O2 and increased the activities of CAT, SOD, GST, GSH and GSH-Px, alleviating the imbalance of the redox system induced by Cd. Furthermore, Cd caused the up-regulation of the mRNA levels of autophagy-related genes (ATG3, ATG5, ATG7, ATG12 and p62), AMPK (Prkaa1, Prkaa2, Prkab1, Prkab2, Prkag2, Prkag3) and Nrf2 (Nrf2, HO-1 and NQO1) signaling pathway, and the expression levels of LC3II/LC3I, p-AMPK/AMPK, Beclin-1, Nrf2 and HO-1 proteins, which were alleviated by Se, indicated that Se inhibited Cd-induced autophagy and Nrf2 signaling pathway activation. In conclusion, our study found that Se antagonized Cd-induced oxidative stress and autophagy in the brain by generating crosstalk between AMPK and Nrf2 signaling pathway.


Assuntos
Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cádmio/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Selênio/farmacologia , Animais , Antioxidantes/uso terapêutico , Encéfalo/metabolismo , Encéfalo/patologia , Intoxicação por Cádmio/tratamento farmacológico , Intoxicação por Cádmio/patologia , Relação Dose-Resposta a Droga , Necrose , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Coelhos , Receptor Cross-Talk/efeitos dos fármacos , Selênio/uso terapêutico , Selenito de Sódio/farmacologia , Selenito de Sódio/uso terapêutico , Vacúolos/efeitos dos fármacos
20.
J Immunol ; 207(3): 923-937, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34301842

RESUMO

Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by genetic defects in leukocyte NADPH oxidase, which has both microbicidal and immunomodulatory roles. Hence, CGD is characterized by recurrent bacterial and fungal infections as well as aberrant inflammation. Fungal cell walls induce neutrophilic inflammation in CGD; yet, underlying mechanisms are incompletely understood. This study investigated the receptors and signaling pathways driving aberrant proinflammatory cytokine production in CGD neutrophils activated by fungal cell walls. Although cytokine responses to ß-glucan particles were similar in NADPH oxidase-competent and NADPH oxidase-deficient mouse and human neutrophils, stimulation with zymosan, a more complex fungal particle, induced elevated cytokine production in NADPH oxidase-deficient neutrophils. The dectin-1 C-type lectin receptor, which recognizes ß-glucans (1-3), and TLRs mediated cytokine responses by wild-type murine neutrophils. In the absence of NADPH oxidase, fungal pathogen-associated molecular patterns engaged additional collaborative signaling with Mac-1 and TLRs to markedly increase cytokine production. Mechanistically, this cytokine overproduction is mediated by enhanced proximal activation of tyrosine phosphatase SHP2-Syk and downstream Card9-dependent NF-κB and Card9-independent JNK-c-Jun. This activation and amplified cytokine production were significantly decreased by exogenous H2O2 treatment, enzymatic generation of exogenous H2O2, or Mac-1 blockade. Similar to zymosan, Aspergillus fumigatus conidia induced increased signaling in CGD mouse neutrophils for activation of proinflammatory cytokine production, which also used Mac-1 and was Card9 dependent. This study, to our knowledge, provides new insights into how NADPH oxidase deficiency deregulates neutrophil cytokine production in response to fungal cell walls.


Assuntos
Aspergillus fumigatus/fisiologia , Doença Granulomatosa Crônica/imunologia , Lectinas Tipo C/metabolismo , Antígeno de Macrófago 1/metabolismo , NADPH Oxidase 2/metabolismo , Neutrófilos/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Animais , Antígenos de Fungos/imunologia , Células Cultivadas , Citocinas/metabolismo , Doença Granulomatosa Crônica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 2/genética , NF-kappa B/metabolismo , Ativação de Neutrófilo , Moléculas com Motivos Associados a Patógenos/imunologia , Receptor Cross-Talk , Transdução de Sinais , beta-Glucanas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA